MATH FORMULAS FOR WASTEWATER, COLLECTIONS & PHYSICAL CHEMICAL EXAMS

GENERAL				
Lbs = mg/l x MGD x 8.34 (lbs/gal)		Watts = volts x amps = $\frac{\text{voltage}}{\text{ohms}}$		
Circumference of a circle = Area of a circle =	$\pi \times \text{diameter, } \frac{\text{or}}{2 \times \pi} \times \text{radius}$ $where \pi = 3.14$ $\pi(r^2) \text{ or } 0.785 \times (d^2)$ $r = radius d = diameter$	Volume (ft³) = length (ft) x width (ft) x depth (ft) Volume of a tank = cubic feet (ft³) in the tank x 7.48 gals/ft³ Volume of a cylinder = area of the circular base x height Volume of a cone = 1/3 x (volume of a cylinder) Volume/Concentration Conversion: mls x normality = mls x normality		
Area of a triangle = $\frac{1}{2}$ base x height		Geometric Mean = antilog of $\frac{\text{sum of logs of sample results}}{\text{number of samples}}$		
Area of a rectangle = length x width		Slope = Rise/Run Percent Slope = Rise/Run x 100%		
Temperature Conversions: Centigrade = $\frac{\text{Fahrenheit} - 32}{1.8}$, Fahrenheit = $\frac{9}{5}$ Centigrade + 32				

PUMP / FLOW				
1 psi = 2.31 feet of head	$\mathbf{Q} = \mathbf{A} \times \mathbf{V}$ where $\mathbf{Q} = \mathbf{q}$ uantity of flow (in units of \mathbf{f} t³/sec.)			
Water horsepower (Water HP) = $\frac{\text{gpm x total head in ft}}{3960}$	A = cross sectional area V = velocity			
Brake horsepower (Brake HP) = $\frac{\text{flow in gpm x total head in ft}}{3960 \text{ x pump efficiency}}$	Velocity in ft/sec = $\frac{\text{flow rate - in ft}^3/\text{sec}}{\text{cross-sectional area - in ft}^2}$			
Motor horsepower (Motor HP) = $\frac{\text{gpm x total head in ft}}{3960 \text{ x pump efficiency x motor efficiency}}$				
Pump electrical costs/year = $hp \times 0.746 kW/hp \times \# of hours pump operates per day \times cost ($) per kW/hr \times 365 day/yr$				

PROCESS CONTROL				
BOD₅ (mg/l, unseeded) = Initial DO — DO after 5 days p	BOD ₅ (mg/l, seeded) = Seeded BOD mg/L = (Initial DO – DO after 5 days) – ((Initial seeded BOD – Seeded BOD after 5 days) * f) p			
where $p = \frac{mls \ of \ sample}{300 \ (mls \ in \ a \ BOD \ bottle)}$	$where f = \frac{mls \ of \ Seed \ in \ Sample}{mls \ of \ Seed \ in \ Seed \ Blank}$	$p = \frac{mls \ of \ sample}{300 \ mls}$		
Nitrogenous Oxygen Demand (NOD), mg/l =	NH ₃ , mg/l x 4.6 mg/l O ₂ per mg/l NH ₃ converted to NO ₃			
Ultimate Oxygen Demand (UOD), mg/l =	(1.5 x BOD, mg/l) + (4.6 x NH ₃ , mg/l)			
Chemical Oxygen Demand (COD), mg/l = *FAS = Ferrous Ammonium Sulfate	(mls of FAS to titrate blank — mls of FAS to titrate sample) x normality of FAS x 8000 mls of sample			
Stream Concentration Formula =	lbs/day discharged from plant + lbs/day upstream total flow MGD (plant flow + stream flow) x 8.34			
Organic Loading, lbs/day/1000 ft ³ =	Hydraulic Loading, gpd/ft² =	Recirculation Ratio =		
BOD applied in lbs per day	gal. per day (including recirculation flow)	recirculation flow		

surface area in ft^2

volume of media in 1000 ft^3

influent wastewater flow

Pond population equivalent (in persons) = flow in MGD x BOD in mg/l x 8.34 lbs/gal 0.2 lbs BOD/day/person	Pond detention time (days) = pond volume in acre — ft influent rate in ac — ft/day	Pond area (acres) = avg width in feet x avg length in feet $43560 \text{ ft}^2/\text{acre}$
Pond volume, acre feet (ac ft) = area in acres (ac) x depth in feet (ft)	Pond organic loading, lbs BOD/day/acre = $\frac{BOD \text{ in mg/l x } MGD \text{ x } 8.34}{pond \text{ area in acres}}$	Pond influent flow in ac-ft/day = gals per day $ 7.48 \text{ gal/ft}^3 \times 43560 \text{ ft}^2/\text{acre} $
Pond hydraulic loading, inches/day = depth of pond in inches detention time in days		Pond population loading = population served in # of persons pond area in acres

Detention Time (hours) = tank volume in gallons x 24 hour/day flow in gallons per day	% Efficiency of Removal = $\frac{\text{mg/l influent} - \text{mg/l effluent}}{\text{mg/l influent}} \times 100\%$			
Sludge Volume Index (SVI) = (% settleable solids x 10,000) MLSS in mg/l	% Settleable Solids = mls of settled sludge after 30 min. vol. of settleometer x 100			
Weir overflow rate = flow in GPD feet of weir	Surface loading (overflow) rate, gpd/ft ² = flow in GPD surface area in ft ²			
Wasting rate (gpm) = pumping rate, MGD x 694 gpm/MGD	F/M (food to microorganism) ratio = BOD (or COD)in mg/l x MGD x 8.34 MLVSS in mg/l x aeration basin vol. in MG x 8.34			
Mean cell residence time (MCRT) in days = MLSS in mg/l x MG (aer. tank + sec. clar. vol.) x 8.34 $\overline{\text{(Eff. SS in mg/l x MGD x 8.34)} + \text{(WAS in mg/l x WAS MGD x 8.34)}}$	Sludge age (days) = MLSS in mg/l x aerator volume in MG x 8.34			
Total Suspended Solids (TSS), mg/l = $\frac{\text{dry solids in grams x 1000 mg/g x 1000 ml/l}}{\text{sample volume in mls}} \underline{\text{or}} \frac{\text{weight of solids in mg x 1000 mls/l}}{\text{sample volume in mls}}$				
Total Solids (TS), mg/l = $\frac{A-B \times 1000}{\text{sample volume in mL}}$ where $A = weight of dish + dried residue in milligrams$ $B = weight of dish in milligrams$				
Volatile Solids (VS), mg/L = $\frac{(A-B) \times 1000}{\text{sample volume in mL}}$ where $A = \text{weight of residue} + \text{dish before ignition in milligrams}$ $B = \text{weight of residue} + \text{dish after ignition in milligrams}$				
Volatile Solids, percentage (%): $\frac{(A-C) \times 100}{A-B}$ where A = weight of dish + dried residue in milligrams B = weight of dish in milligrams C = weight of residue + dish after ignition in milligrams				
Dry solids to a digester, lbs/day = sludge in gpd x $8.34 \times \frac{\% \text{ Total Solids}}{100}$				
Volatile Solids to a digester, lbs/day = sludge in gpd x 8.34 x $\frac{\% \text{ Total Solids}}{100}$ x $\frac{\% \text{ Vol.Solids}}{100}$				
Volatile Solids Destroyed in a digester, lbs/day/ft³ = Volume of sludge in gal/day x % solids x % volatile x % reduction x 8.34 Digester volume in ft³				
% Volatile Solids Destroyed in a digester: % reduction = $\frac{(in)-(out)}{(in)-(in*out)}$ * 100				
Return Activated Sludge (RAS) Rate calculated using settleability: $MGD = Secondary influent flow, MGD \times Return Sludge Rate Ratio$ $where Return Sludge Rate Ratio = \frac{30 \text{ min.settled sludge volume in ml/l}}{clear liquid volume in ml/l}$				
Total Waste Activated Sludge (WAS) in MGD = current rate in MGD + additional rate in MGD	Waste Activated Sludge (WAS) pumping rate = Solids to be wasted in lbs/day			

WAS SS in mg/l x 8.34

This page left BLANK FOR CALCULATIONS